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Abstract

In air quality management, reducing emissions from pollutant sources often forms the primary 

response to attaining air quality standards and guidelines. Despite the broad success of air quality 

management in the US, challenges remain. As examples: allocating emissions reductions among 

multiple sources is complex and can require many rounds of negotiation; health impacts associated 

with emissions, the ultimate driver for the standards, are not explicitly assessed; and long 

dispersion model run-times, which result from the increasing size and complexity of model inputs, 

limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an 

optimal strategy. A new modeling framework, called the "Framework for Rapid Emissions 

Scenario and Health impact ESTimation" (FRESH-EST), is presented to respond to these 

challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions 

scenarios at the urban scale, providing efficient computations from emissions to health impacts at 

the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission 

reductions to meet specified environmental and health constraints, and a convenient user interface 

and graphical displays are provided to facilitate scenario evaluation. The new framework is 

demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization 

strategies: the first minimizes emission reductions needed to achieve a target concentration; the 

second minimizes concentrations while holding constant the cumulative emissions across local 

sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 

State Implementation Plan without the proposed stack parameter modifications or shutdowns. In 

addition, the lower health impacts estimated for these strategies suggest the potential for FRESH-

EST to identify pollution control alternatives for air quality management planning.
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1 Introduction

In air quality management, the primary response to a known or potential exceedance of an 

air quality standard or guideline is to reduce emissions from local and sometimes regional 

emission sources. In the US, state agencies formalize such responses in State 

Implementation Plans (SIPs). For example, the 2010 promulgation of a more stringent 

National Ambient Air Quality Standard (NAAQS) for SO2 caused 29 regions in 16 states to 

be in non-attainment (US EPA, 2016). The US Environmental Protection Agency (US EPA) 

suggests that emissions reductions form the basis of each state s attainment plan (US EPA, 

2014). The allocation and magnitude of emissions reductions among polluting sources 

usually is determined by state agencies with the oversight of US EPA. Final allocations may 

require extended negotiations between these agencies and stakeholders, and may include 

consideration of costs, feasibility, legal requirements and public input. Central to air quality 

management and the development of emission reduction strategies are dispersion models 

used to predict pollution concentrations, allocate source contributions, and determine 

whether a specific strategy will meet ambient standards or other goals.

Despite broad success, challenges to air quality management remain (US EPA, 2011). First, 

for air quality managers, identifying emissions reduction strategies that avoid litigation and 

satisfy the public and other stakeholders can be difficult, requiring months of negotiation 

and perhaps years to implement, during which time sustained exposures occur to potentially 

harmful levels of pollution (NRC, 2004). Second, the health impacts and benefits of 

emission reduction strategies, the principal drivers for air quality management, are rarely 

assessed as part of the formal air quality management in the US or elsewhere. This absence 

can result in selection of strategies that minimize costs and avoid litigation but are not the 

most health protective. An approach limited to achieving air quality standards also ignores 

health effects that occur below the standards (Brook et al., 2010). Third, it is burdensome 

and complex to develop appropriate datasets, models, and interpretative outputs needed for 

dispersion modeling, health impact assessments, and other purposes. Fourth, this complexity 

results in long model run times that limits the number of scenarios that can be evaluated. As 

a result of these challenges, optimal strategies might not be identified, and in regulatory 

applications, missing such strategies could result in the rejection of the air quality plan or 

other undesirable economic, legal or health ramifications.

Many approaches have been used to address the challenges mentioned above. For the 

challenge of allocating emissions reductions among multiple sources, optimization 

approaches can identify strategies that minimize emissions reductions, control costs or other 

functions, while meeting technical and other constraints. Early studies focused on 

minimizing costs of emission controls while keeping pollutant concentrations below 

threshold values (Kohn, 1969; Kyan and Seinfeld, 1972; Cass, 1981). Others focused on 

administrative controls and optimized dispatch schedules to minimize pollutant 

concentrations during periods of adverse meteorology (Sullivan and Hackett, 1973). A game 

theory model balanced economic motivations of stakeholders (e.g., polluters, the public and 

regulators), rather than cost-minimization alone (Bird and Kortanek, 1974). Acid rain 

problems in Europe and the US were addressed with a suite of new optimization approaches. 

In Europe, the Regional Acidification INformation and Simulation (RAINS) model used 
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optimization to meet several constraints including critical loads, which are spatially-varying 

deposition targets (Alcamo et al., 1990; Batterman, 1992). In the US, a multi-objective 

approach attempted to achieve an equitable distribution of impacts across stakeholders, as 

well as reduce deposition (Ellis, 1988). Markets for sulfur dioxide (SO2) and nitrogen oxides 

(NOx) emissions were evaluated using optimizations that incorporated costs and incentives 

of various abatement methods (Winebrake et al., 1995; Farrell et al., 1999). The growing 

concentrations of greenhouse gases stimulated the development of the Greenhouse Gas and 

Air Pollution INteractions and Synergies (GAINS) abatement optimization model (Wagner 

et al., 2007). Least-cost optimization at the regional scale has been used to address PM2.5 

and O3 issues in several major eastern US cities (Liao and Hou, 2015). Overall, most 

optimized air quality management strategies have minimized emissions reductions or control 

costs, and to date few have considered public health impacts (Kan et al., 2004).

Air quality management analyses using health impact assessments (HIAs) and related 

techniques estimate the burden of disease attributable to air pollutant exposure. Spatially-

resolved HIAs, which account for the susceptibility and vulnerability of subpopulations as 

well as the variation in concentrations, can apportion the burden to specific emission sources 

or source classes (Fann et al., 2013). The US EPA Benefits Mapping and Assessment 

Program (BenMAP), which is used in regulatory impact analyses (RIAs) to estimate impacts 

of changes in ambient air quality (US EPA, 2015a), might be customized to fit urban, 

regional or national scales and match available input data (Hubbell et al., 2009). However, 

incorporating HIA methods into air quality management is non-trivial. HIAs require 

spatially-resolved data regarding exposure, vulnerability, demographics, disease incidence 

rates and other information, which are collected at different scales using different geographic 

units (e.g., Census blocks and ZIP codes). These data often change over time, and quickly in 

some cases. The lack of suitable spatially- and temporally-resolved data can restrict the 

ability of HIAs to differentiate the health impacts of alternative emission scenarios (Hubbell 

et al., 2009). In addition, these analyses can be computationally intensive, requiring 

estimates and mapping of concentrations and other data at potentially high resolution over 

long periods of time.

This paper presents a modeling framework, called the “Framework for Rapid Emissions 

Scenario and Health impact ESTimation” (FRESH-EST), which incorporates dispersion 

modeling, elements of HIA and optimization analyses into air quality management. FRESH-

EST rapidly estimates concentrations and health impacts of alternate emissions scenarios at 

the urban scale, and gives results comparable to standard EPA models such as AERMOD. It 

incorporates optimization modules to identify strategies that meet cost, environmental and 

health constraints, and it provides a convenient user interface. This new framework is 

demonstrated using an SO2 non-attainment area in southeast Michigan, as described in a 

recently proposed SIP (MDEQ, 2015).

2 Methods

2.1 Overview

FRESH-EST combines several database and modeling elements to simulate point-source 

emissions scenarios and the resulting concentrations and health impacts. In brief, the 
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framework starts with pollutant source data (emissions inventory), utilizes dispersion 

modeling to predict concentrations at discrete locations (‘receptors’), performs rasterization 

and spatial averaging to map receptor concentrations to geographic units of interest, e.g., 

Census blocks, and then combines concentrations at geographic units with demographic, 

epidemiologic and other data to estimate environmental and health impacts. An optimization 

module identifies emissions scenarios that meet economic, environmental or health goals. 

The formulation and programming implementation allow rapid calculations and facilitates 

the development of optimized strategies that attain concentration limits in a cost-effective 

manner, meet health goals, or address health inequities. This following presents the 

framework and several illustrative applications.

2.2 Source emissions and dispersion modeling

The concentration of a pollutant can be predicted from multiple emission sources at the 

urban scale as:

(1)

where Ri,t = concentration (μg/m3) at receptor i (geocoded location) and time t (hour), Qj = 

emission rate (g/s) at source j, Si,j,t = concentration (μg/m3) at receptor i that results from 

dispersion modeling of unit emissions (1 g/s) from source j at time t, and Bi,t = background 

concentration (μg/m3) at receptor i at time t. Elements of matrix S are equivalent to the 

transfer coefficient representing the physical and chemical processes affecting the pollutant 

from release at source j to receptor i at time t. While any dispersion model can be used, the 

application and case study (below) applies AERMOD (Cimorelli et al., 2004), a “guideline” 

model recommended by US EPA. Eq. (1) estimates the contribution from local sources, and 

adds “background” concentration Bi,t for other sources, e.g., those outside the modeled 

domain. Background levels can be significant (e.g., often the case for PM2.5), or low and 

potentially negligible (e.g., CO, SO2). Assumptions allowing the use of eq. (1) are that the 

modeled pollutant is conservative or first-order, and that emission rate changes do not 

substantially change pollutant dispersion. In this case, matrix S is independent of the 

emission rate. For conservative or nearly conservative pollutants (no significant 

transformation at the urban scale), the same S can be used. In this case, matrix S is also 

independent of pollutant. Otherwise, several sets of S may be required.

2.3 Estimating geographic unit concentrations

FRESH-EST estimates concentrations in the desired geographic units (e.g., ZIP codes, 

Census blocks) using spatial averaging or rasterization of receptor concentrations (R). 

Several approaches are needed. For large geographic units (e.g., ZIP codes), simple spatial 

averaging can be used as each unit contains many modeled receptors (Pebesma, 2016). For 

small geographical units (e.g., Census blocks), such averaging may not be appropriate; some 

geographic units may contain few or no receptors within their borders. In this case, FRESH-

EST uses a series of steps in a rasterization method similar to earlier work (Batterman et al., 

2014). First, a modified inverse distance interpolation formula calculates distance weights 
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between receptor i to centroids of raster grid k that has fine spatial resolution (Shepard, 

1968):

(2)

where Di,k = unit-less distance weighting of receptor i to raster centroid k, dp
i,k = Euclidean 

distance d from receptor i to raster centroid k raised to power p (p = 2), and i* = a receptor 

in the set of receptors i’ that are within a user-defined range of each raster centroid (the 

default range is the largest nearest-neighbor distance in the receptor grid). Second, area-

weights of raster cells to the geographic unit are found by dividing each raster cell into 100 

sub-cells and counting the number of sub-cell centroids within the boundaries of nearby 

units (Hijmans, 2015). The percentage of each unit area attributed to nearby raster cells is 

calculated, and these area weights compose raster-unit mapping matrix A. Finally, D, the 

distance weight receptor-raster mapping matrix, and A, the area weight raster-unit mapping 

matrix, are multiplied and transposed to create M, the receptor-unit mapping matrix, which 

allows calculation of concentrations at the geographic unit of interest, C, directly from 

receptor concentrations R in eq. (1):

(3)

M depends only on the locations of receptors and geographic units and S reflects the transfer 

of emitted pollutants from emitting stack to receptor. Since M and S are independent and 

invariant of Q, calculating C for a new scenario requires only a new Q. Note that calculating 

R for a new scenario does require re-calculation of eq. (1).

For the greatest efficiency, eq. (3) can be expressed as:

(4)

An example using the case study application (described below) illustrates the efficiency of 

this formulation. In the case study, the dimensions of the matrices in eq. (3) are defined by 

11 emission sources, 3,967 receptors, 3,242,001 raster cells, 74 geographical units (ZIP 

codes), and 8760 hours. Considering a moderately-sized problem, asthma exacerbations at 

the ZIP code level associated with annual average SO2 concentrations, S is reduced to a 2-

dimensional matrix of annual average receptor concentrations that result from unit 

emissions. Thus, the first group of variables on the right-hand side of eq. (3) becomes 

(D(3,967 × 3,242,001) A(3,242,001 × 74))T S(3,967 × 11) Q(11 × 1). Precomputing and saving (D A)T 

S gives a matrix with dimensions of only (74 × 11), which requires only 814 multiplications 

for each optimization iteration, a tremendous computational savings over the 9.52 × 1011 

multiplications required to compute eq. (3) and the 3.23 × 106 multiplications required if M 
= (D A)T is pre-computed.
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2.4 Estimating health impacts

Health impacts for selected health outcomes and populations are derived using established 

health impact assessment methods (US EPA, 2015a). Health impact functions (HIFs), which 

estimate the number of cases attributable to pollutant exposures, are derived from 

expressions for relative risk and four parameters: the concentration-response (CR) 

coefficient for the pollutant-outcome pair; the baseline incidence rate for each health 

outcome; the exposure concentration; and the number of people exposed. Inputs should be 

spatially-resolved to the finest scale to reflect variability among subpopulations in a study 

area (Hubbell et al., 2009), but coarser data can be downscaled if necessary.

The form of the HIF is typically log-linear or logistic, depending on the underlying model 

used to generate the CR coefficient. For log-linear models, the estimated number of cases Δ 

Yu in geographic unit u attributable to ambient concentration Cu is:

(5)

where y0,u = unit-level health outcome baseline incidence rate (e.g., asthma exacerbations 

per person), β = CR coefficient for the pollutant-outcome pair (e.g., units are 1/ppb in the 

case study), Cu = unit concentration for unit u (e.g., units are ppb in the case study), and Pu 

= relevant exposed population in geographic unit u (US EPA, 2015a). For logistic models, 

the number of attributable cases is:

(6)

Both log-linear and logistic models are incorporated into FRESH-EST.

2.5 Optimizing air quality management strategies

FRESH-EST employs non-linear optimization modules, available through nlopt (Johnson, 

2010) and accessed using the R package nloptr (Ypma, 2014), to optimize emission 

scenarios subject to economic, concentration and health constraints. The case study 

described below demonstrates the following two optimization strategies.

First, to minimize emission reductions required to meet a target concentration, R*, e.g., an 

air quality standard, at all receptors, the objective function, constraints and bounds are:

(7a)

(7b)

Milando et al. Page 6

Environ Int. Author manuscript; available in PMC 2017 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7c)

where f4 (·) = function returning the largest 4th highest daily 1-hour maximum concentration 

across all non-fence-line receptors (i.e., the “design” concentration), and Qj,0 and Qj = the 

initial and current emission levels at source j. This formulation considers receptor 

concentrations only, thus, mapping matrix M is not used. The use of f4 reflects the current 

form of the SO2 NAAQS.

The second optimization minimizes the maximum concentration under a constraint that the 

emissions summed across the facilities are not less than those in the proposed SIP case, 

designated as Q* (g/s). In this case, the optimization tries to obtain a better environmental 

outcome for the same level of emissions, with the following objective function and 

constraint:

(8a)

(8b)

The same bounds on emissions at each source in eq. (7c) are also used. The rationale behind 

these two optimization strategies is further described in Section 4.1.

Both optimization strategies used the Constrained Optimization BY Linear Approximation 

(COBYLA) non-linear optimization algorithm (Powell, 1994) with a relative emission 

tolerance of 10-4 (stopping the optimization if each emission value changed by less than 10-4 

in an iteration), and a relative constraint tolerance of 10-8 (similar to the relative emission 

tolerance). No stopping criteria were used for the absolute emission tolerance, objective 

function stopping value, absolute or relative changes in objective function value, number of 

iterations, or optimization time.

2.6 Interface and implementation

FRESH-EST uses an R-Shiny (Chang et al., 2015) interface to interact with primary 

framework components. To generate R , this interface packages together the desired metric, 

i.e., annual average, daily 24-hour average, or daily 1-hour maximum concentrations, the 

pollutant, daily background concentrations (B), and a vector of emission factors (Q). These 

inputs are passed to a FORTRAN subroutine that applies Q to the unit emission 

concentration matrices (S) and generates new spatial profiles. FORTRAN was selected to 

maximize processing speed and because it allows simultaneous references to a single file, 

which enables the subroutine to run efficiently on multiple cores or clusters (using the R 

package parallel (R Core Team, 2015)). The emission factor application subroutine returns a 

matrix of (hourly) concentrations at receptors in the receptor grid (R).
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Options for the objective function and constraints of the optimization subroutine also are 

accessed using the R-Shiny interface.

The R-Shiny interface incorporates functions to calculate and map health outcomes and 

potentially affected populations. These functions access user-prepared comma separated 

files containing concentration-response coefficients, unit-level population counts and health 

data, and other data. The generated maps allow for quick visual screening of results and can 

be easily saved for use in presentations or papers.

3 Case study

3.1 Overview

A full scale “real-world” demonstration of FRESH-EST is presented for Detroit and areas of 

southeast Michigan. This area is highly industrialized, densely populated, and a portion has 

been classified as non-attainment for SO2. A proposed SO2 SIP (MDEQ, 2015) presents 

several SO2 emission scenarios. Detroit residents are susceptible to adverse effects of 

pollutants, e.g., 13.7% of adults in 2005 had asthma (much higher than state and national 

norms (Wasilevich et al., 2008; US Census Bureau, 2015a, b; DeGuire et al., 2016)). Many 

Detroit residents are vulnerable, e.g., 32.5% of residents earned below the federal poverty 

level and subsequently may be less able to respond to or mitigate high exposures (O’Neill et 

al., 2012). Further, over 80% of Detroit residents are non-white, and minority populations, 

especially children, in urban areas can suffer increased risk of health effects associated with 

air pollution (Pope and Dockery, 2006). This situation warrants examination of a 

comprehensive set of emission scenarios and associated health impacts.

FRESH-EST is used to simulate four cases: the base case (2012 emissions), the proposed 

SIP case (SIP), and two optimized strategies (OPT1 and OPT2). Changes in emissions, 

concentration, and health benefits (i.e., reduction in adverse health outcomes) are compared 

for these four cases. We also evaluate the computational efficiency of FRESH-EST.

3.2 Emissions cases

Sources in the case study were drawn from an emission inventory generated by the Michigan 

Department of Environment Quality (MDEQ) as part of the SO2 SIP process (MDEQ, 

2015). The inventory contains allowable and actual (2012) emissions for 70 stacks at the 9 

largest SO2 facilities in the southeast Michigan area. These facilities are major sources 

(annual actual emissions in 2012 exceeding 100 tons of SO2). The inventory included stack 

location, height, diameter, exit gas temperature and velocity, and annual average emission 

rate. The proposed SIP case reduced emissions at 20 of 70 stacks; of these 20, we identified 

the 11 largest and closest sources to Detroit. The design concentration, i.e., the largest 4th 

highest daily 1-hour maximum concentration at non-fence-line receptors, predicted using the 

11 stacks closely matched the design concentration that was predicted using all 70 sources. 

The 11 stacks represented 79% of the actual 2012 emissions from the MDEQ SIP inventory 

(90% by excluding DTE Monroe, a distant source which contributes only modestly to SO2 

in the non-attainment area) and includes large stacks at the Carmeuse Lime & Stone 

manufacturing plant, DTE River Rouge and DTE Trenton Channel coal-fired power plants, 
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and the Hot Strip Mill (HSM) reheat furnaces at the US Steel steelmaking plant in Ecorse. 

The 9 blast furnaces at the US Steel facility on Zug Island were modified in the proposed 

SIP but were excluded in our analysis (these sources totaled only 919 tons SO2/year. The 11 

stacks modeled for the case study emitted a total of 94,394 tons SO2/year.

Case 1 (“Base”) used maximum allowable emissions, and thus represented current worst-

case conditions. Case 2 (“SIP”) used the proposed SIP strategy, developed by MDEQ using 

Reasonably Achievable Control Technology (RACT) analyses, AERMOD dispersion 

modeling, emissions limitations negotiated between MDEQ and polluters (summarized in 

Table 1) (MDEQ, 2015), and maximum allowable emissions under the proposed emission 

limits; this represents a future worst-case condition designed to attain the NAAQS. Case 3 

(“OPT1”) minimized total emission reductions from the base case (summed across the 

modeled sources) with the constraint that R* (design concentration from the proposed SIP 

case) was not exceeded (eqs. 7a-c). Case 4 (“OPT2”) minimized the design concentration, 

subject to an emission floor Q* (the total modeled emissions from the SIP case) (eqs. 8a-b).

3.3 Dispersion modeling

Hourly concentrations (coefficients of transfer matrix S) were predicted using AERMOD 

(Version 8.1.0) and pre-processed 2012 AERMET (minute) meteorological data from the 

Detroit Metro Wayne County Airport. The receptor network (3967 receptors) combined two 

grids: a grid with 200 m spacing near SO2 sources in southwest Detroit, and a grid with 

1000 m spacing that spanned most of Wayne County containing Detroit (Figure 1). 

Following MDEQ’s implementation, certain sources were designated as urban. The “source 

group” function of AERMOD was used to generate unformatted binary files of hourly 

concentrations at the receptors for each of 70 stacks (resulting in 70 files totaling 18.1 GB).

3.4 Health impact estimation

Health impacts were estimated for SO2 concentrations due to local point sources following 

methods in the recent SO2 RIA (US EPA, 2010); exposures and health impacts from 

secondary PM2.5 were not considered. Due to data availability, ZIP codes were chosen as the 

geographical unit. The study domain contained 74 ZIP codes. The average concentrations 

within the ZIP code was obtained using the “simple spatial averaging” option of FRESH-

EST.

Health outcomes, HIFs and CR coefficients were selected on the weight of evidence of a 

causal relationship with SO2 (US EPA, 2008, , 2015a) and included asthma exacerbations 

(as one or more asthma-related symptoms, children ages 6-14), emergency department (ED) 

visits for asthma (children ages 0 – 17), asthma hospitalizations (ages 0 – 64), and chronic 

obstructive pulmonary disease (COPD) hospitalizations (ages ≥ 65 years) (Table 2). Each 

HIF uses 24-h average SO2 concentrations. ZIP codes-specific baseline rates of asthma 

hospitalizations and ED visits in Detroit used the Epidemiology of Asthma in Michigan 

report (DeGuire et al., 2016); county-specific rates were used for ZIP codes outside of 

Detroit (MDHHS, 2014, 2016). For asthma exacerbations (6 – 14 years), an incidence rate of 

0.412 cases per person-day is used (Batterman et al., in preparation). Population data were 

obtained from the 2010 Census (US Census Bureau, 2015a). The population of each ZIP 
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code was age-stratified using 2010 Detroit data (MDHHS, 2015). The prevalence of asthma 

in Wayne County was used to estimate the population with asthma (AIM, 2014). Asthma or 

COPD hospitalizations, asthma ED visits, and asthma exacerbations attributable to SO2 

exposure were calculated for subpopulations in age groups of 6 – 14, 0 – 17, 0 – 64, and 65 

and older years of age, depending on the outcome.

4 Results

4.1 Emissions comparisons

The final emission reductions in the proposed SIP (Table 3) resulted from months of 

negotiations involving discussions of feasibility, legal considerations and RACT analyses, 

while OPT1 and OPT2 are solutions to a set of emission and concentration constraints. In 

this regard, these alternative emissions reduction strategies are not directly comparable. 

However, the purpose of the case study was to demonstrate the utility of FRESH-EST using 

a realistic full-scale application, which OPT1 and OPT2 provide. OPT1 converged after 485 

iterations to a final cumulative emission rate slightly below that of the SIP case (2.1% 

difference, 1,113 tons/year); OPT2 converged after 216 iterations with the same cumulative 

emission rate as the SIP case.

As expected, the largest differences in emission reductions came at Carmeuse Lime and 

DTE Trenton Channel, i.e., the only facilities that proposed physical modifications. Under 

the proposed SIP, Carmeuse Lime would construct a new and taller stack to vent the 

combined emissions from its two kilns. The short existing stacks at Carmeuse Lime were 

identified as a cause for the high SO2 concentrations near the facility, thus a taller stack was 

proposed that will increase dispersion, reduce local impacts and permit a higher combined 

emission rate from both kilns (MDEQ, 2015). The RACT analysis in the proposed SIP 

indicates that constructing a new stack is the most cost effective strategy for this facility; our 

analysis did not consider the cost to the polluter. Stack construction has different 

implications compared to the emission reduction strategy in the FRESH-EST; OPT1 and 

OPT2 strategies reduced the combined emissions from the two kilns by 511 and 693 tons/yr, 

respectively (representing 45 and 61% reductions from the base case).

At the DTE Trenton Channel electrical generating unit, the proposed SIP would shut down 

four of the smaller coal-fired boilers (boilers 16-19, total capacity of 3,012 MMBTU/hr); 

emissions at the fifth and largest boiler, called 9A (4,530 MMTBU/hr), would be unaffected. 

Although the SIP does not describe the shuttering of boilers, recent MDEQ dispersion 

modeling files and proposed permits show boilers 16-19 being replaced by five natural gas 

units (MDEQ, 2016). By comparison, OPT1 reduced emissions at boilers 16-19 and 9A by 

30 and 66%, respectively; OPT2 reduced emissions by 37 and 58%, respectively. As at 

Carmeuse Lime, the optimized strategies did not involve cost estimates. The impending 

Mercury and Air Toxics Standards regulations (MDEQ, 2016) may make shuttering and 

replacing these boilers the most cost effective option for the utility.

Both optimization scenarios achieved concentration reductions comparable to those in the 

SIP without building or modifying emission sources. This indicates the potential for 
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optimized strategies to expand the set of alternatives considered in emission reduction 

negotiations.

4.2 Concentration comparisons

The predicted SO2 design concentration in the proposed SIP case was 79.2 ppb, designated 

R* and used in OPT1. R* exceeds the current NAAQS (75 ppb), and is only used to compare 

the base case and alternative emission scenarios. Several factors affect the determination of 

R*. First, the case study did not consider background concentrations; the proposed SIP 

derived a background concentration of 15 ppb to be added to modeled design concentrations 

((MDEQ, 2015). Second, the NAAQS is defined as a three-year average of the annual 4th 

highest daily 1-hour maximum concentration at a monitor, not a 1-year value. Third, 

placement of fence-line receptors can influence whether the standard is attained, and the SIP 

and case study use slightly different receptor grids. Fourth, MDEQ s justification for 

allowing some receptors to exceed the standard is that not all sources will emit maximum 

emissions, and that all facilities are unlikely to simultaneously emit at the maximum rate. 

This said, the case study was intended to demonstrate capabilities of FRESH-EST and not to 

demonstrate strategies that attain NAAQS compliance.

The distributions of concentrations across receptors in optimized and SIP cases are 

compared in Table 4. The maximum 4th highest 1-hour concentrations show similar 

distributions, e.g., percentile values for the SIP, OPT1 and OPT2 cases were different by an 

average of 4.6% (3.6 ppb). Differences were greater for daily 24-hour average 

concentrations, e.g., the SIP case decreased concentrations from the base case by an average 

of 46% (excluding the minimum and maximum concentrations); OPT1 and OPT2 decreased 

concentrations by an average of 52 and 58%, respectively. While the SIP, OPT1 and OPT2 

strategies all achieved the same design concentration, the optimized strategies also reduced 

daily average concentrations, an important metric since it is used to calculate health impacts 

attributable to SO2 exposure (Section 4.3).

The spatial pattern of average daily 24-hr (non-fence-line) concentrations at the ZIP code 

level is shown in Figure 2. The greatest reduction in near major sources, e.g., in the 48217 

ZIP code, which has been called Michigan’s (and at times, the nation’s) “most polluted” ZIP 

code (Lam, 2010). The two optimizations reduced average 24-hr SO2 levels in this area by 

52 to 56%, compared to 44% for the SIP case.

4.3 Health impacts

The numbers of cases of adverse health outcomes attributable to SO2 exposure for the four 

cases are shown in Table 5. SO2-related health effects were calculated using average daily 

SO2 concentrations, so the spatial pattern of avoided health impacts matches the 

concentration reductions (Figure 2). Compared to the baseline, both SIP and optimized 

strategies reduce impacts significantly (by 45 to 52%). Benefits of the optimized strategies 

are most evident for avoided asthma exacerbations, e.g., OPT1 and OPT2 result in 2,613 and 

3,859 fewer asthma exacerbations than the SIP case, representing reductions of 9.2 and 

13.6%, respectively. These differences are a consequence of the spatial pattern of SO2 

exposure at the ZIP code level (Figure 2) applied to the population density and vulnerability 
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risk factors in Detroit. Although both optimized strategies resulted in fewer health impacts 

than the SIP case, they do not account for the political and legal factors issues in the SIP 

case. Nevertheless, these results indicate the potential for optimized strategies to expand the 

set of alternatives considered in emission reduction negotiations.

4.4 Computational efficiency

FRESH-EST calculations are far faster than the routine implementation of AERMOD, GIS, 

and R calculations. For example, each iteration of the case study optimization (applying 

FRESH-EST with 11 sources, 3967 receptors, and 8760 hours) required 11 sec on a 

workstation (equipped with 8 GB RAM, 64 bit Windows 7 ™ OS, Intel® Core™i7-2600 

CPU operating at 3.40 GHz with 4 physical cores and 8 logical cores; roughly 1 sec per 

source). In comparison, about 6 min was required for the comparable AERMOD run (33 sec 

per source). While an initial AERMOD run is required to calculate S, FRESH-EST does not 

require further AERMOD runs (if stack parameters other than emission rate do not change 

significantly). Additional efficiencies are attained by common use of the mapping matrix M 
for each receptor-unit pairing for health impact calculations; this implementation shortens a 

calculation conventionally requiring hours to a few minutes. Gains are greatest in health or 

inequity optimization problems that require concentrations in geographic units like Census 

blocks or ZIP codes, e.g., using an existing (D A)T S matrix allows several thousand 

iterations in minutes. The FRESH-EST approach makes relatively complex and large scale 

optimizations feasible on an individual workstation.

4.5 Case study limitations

The case study was intended to demonstrate the capability of FRESH-EST to develop and 

evaluate emission strategies. The case study has several limitations that may restrict the 

broader relevance of certain conclusions. First, generating optimized emissions scenarios 

using goals or constraints based on emissions summed across stacks and facilities does not 

account for differences in control costs, technical feasibility, and economic and political 

viability. These factors that will vary by stack, facility and context, but cost or other 

functions and constraints could be added to the optimization to increase realism. Second, the 

spatial resolution of health impacts used ZIP codes, with the implicit assumption that these 

are homogenous geographic units, mainly due to limitations in the health data. Spatial 

distance weighting, rasterization and other approaches to increase the spatial resolution were 

not attempted. Third, health impact estimates were conservative, and did not consider effects 

of secondary particulate matter (PM) due to SO2 emissions, or emissions and exposures of 

other pollutants emitted by the same facilities. This is important since the relationship 

between PM2.5 exposure and asthma (and other outcomes) is stronger than for SO2, and 

nationwide impacts due to secondary PM2.5 may exceed those of SO2 alone (US EPA, 

2010). Future versions of FRESH-EST may be able to estimate health effects due to 

secondary PM, as modeling of SO2 to particle formation is a potential option in future 

AERMOD versions (US EPA, 2015b). Health impacts from additional pollutants are easily 

incorporated into FRESH-EST. In addition, the health impact estimates utilized baseline 

health rates at the county- or study-wide level, which may not reflect the variability in health 

and vulnerability at the ZIP code (or finer) level. Fourth, we did not consider equity 

implications of the emission control strategies. Fifth, the case study considered only four 
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facilities, three of which were close together. While representing the configuration of the 

major SO2 sources in Detroit, this situation will limit differences between optimized control 

strategies and those with other goals. Potentially much larger differences may result if the 

emission sources are more broadly distributed. Finally, a single point estimate is used for 

each CR coefficient. Incorporating the uncertainty of these coefficients would increase the 

magnitude the health impacts, especially for those CRs using log-linear models (Chart-Asa 

and Gibson, 2015).

5 Discussion

5.1 Overview

FRESH-EST varies from standard tools in several ways. It is not equivalent to the “source 

group” option in AERMOD that allows apportionments of pre-designated outputs. Rather, 

FRESH-EST evaluates the influence of sources and gives substantial flexibility with respect 

to emission rates. FRESH-EST also minimizes emission reductions, concentrations, or 

health effects using non-linear rather than linear optimization; linear optimization has been 

used in nearly all previous emission scenario modeling efforts (Amann et al., 2011; 

Thorneloe et al., 2007).

5.2 Advantages of FRESH-EST

The reduction in computational burden in FRESH-EST allows analyses that can enhance 

dispersion modeling applications. As examples: dispersion model applications might use 

simple uniform receptor grids rather than multi-tiered nested grids to identify hotspots; 

Monte Carlo-type uncertainty analyses addressing emission variability become much more 

feasible; and model runs using variable (e.g., historical) hourly emissions will run rapidly.

Similarly, the optimization module in FRESH-EST provides opportunities to examine and 

design emissions scenarios in novel ways, including ways that might be missed by 

conventional modeling setups. Optimization results can highlight differences between 

typical abatement strategies and other specific strategies. For example, some health effects in 

the case study were driven by emissions from smaller sources with poor dispersion that were 

close to vulnerable populations, rather than by emissions from much larger and distant 

sources with elevated stacks. Such results depend on city- and site-specific factors, and 

FRESH-EST can quickly reveal such relationships. Further, since essentially any set of 

optimization objectives and constraints can be applied, including considerations of 

emissions, concentrations and health, optimization results can better fit the goals and 

constraints informed by scientific, economic, and regulatory considerations.

FRESH-EST fills several regulatory needs in current frameworks and models. It 

simultaneously performs dispersion modeling, quantitative health impact estimation, 

optimization, mapping and tabulation functions, which normally require the use of various 

specialized software programs. Further, it allows users to perform “what if” analyses. 

Stakeholders do not need additional software or technical training to run FRESH-EST; 

rather, state agencies need only provide the modeling components: receptor grid, 

unformatted unit-emission binary outputs, and initial stack-level emissions. This added 
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flexibility allows for expanded exploration of alternative emission scenarios and facilitates 

stakeholder involvement in the SIP process.

FRESH-EST provides an alternative to estimating health impacts from existing health risk 

assessment tools (Anenberg et al., 2015). Both FRESH-EST and the current EPA Regulatory 

Impact Assessment method, BenMAP (US EPA, 2015a) can be customized for analyses of 

health impacts at various spatial and temporal resolutions, including short time periods that 

are relevant for outcomes like asthma exacerbations and ED visits, and both can be used to 

design strategies that comply with specific design values relevant to the NAAQS. However, 

FRESHEST may be the preferred tool for SIP development and other applications for 

several reasons: it generates results for many emissions alternatives without requiring 

multiple modeling runs; it includes additional health impact metrics that may be of interest 

for urban-scale analyses, e.g., DALYs and inequality metrics; and its optimization module 

offers greater flexibility in the development of control alternatives. Compared to other health 

risk assessment tools (Anenberg et al., 2015), FRESH-EST uses user-defined local 

concentration-response relationships to estimate a range of health outcomes due to 

exposures to primary pollutants on the city-level to regional scale.

Spatially-resolved estimates of the health burden due to air pollutants, like those produced in 

FRESH-EST, provide information that can be used to identify emissions reduction strategies 

with the largest public health impact. This is particularly important for areas like 

metropolitan Detroit that have significant emissions sources and large vulnerable 

populations. For researchers and public health practitioners, FRESH-EST can generate 

information on the potential health impacts of exposures to ambient air pollutants at fine-

grained scales and help inform plans to mitigate these impacts. An expanded discussion and 

analysis of FRESH-EST for use in regulatory frameworks and quantitative HIAs is 

forthcoming (Martenies et al., in preparation).

5.3 Limitations of FRESH-EST

Like any modeling system, FRESH-EST has a number of limitations. First, with respect to 

emissions, only point sources are considered, cost functions associated emission reductions 

are not used, and emission rates are time invariant. All of these limitations can be relaxed 

with appropriate inputs. FRESH-EST assumes that stack parameters are independent of 

emission rate, as discussed earlier. The verity of this assumption depends on the pollutant, 

local meteorology and emission magnitude. For example, dry electrostatic precipitators used 

to control PM emissions can operate at high temperatures (up to 700 °C (US EPA, 2003a)), 

and thus stack temperatures at the power plants in the case study (which range from 138 to 

288°C) would not need modification. Wet flue-gas desulfurization systems used to control 

SO2 emissions can operate from 149 to 371°C (US EPA, 2003b), and, similarly, stack 

temperatures would not require changes. In other cases, large temperature changes might 

affect plume rise and alter pollutant dispersion. Such changes, as well as changes in physical 

stack height, can be accommodated in FRESH-EST using a different transport matrix S.

FRESH-EST does not model reactions among pollutants since eq. (1) linearizes the source-

receptor relationship. Thus, concentrations of secondary pollutants that depend on 

atmospheric chemistry (e.g., O3) cannot be modeled. Generally, this does not pose a 
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significant limitation at the urban scale for SO2, CO, PM10, PM2.5, Pb and many other 

pollutants. As noted earlier, first-order transformations that produce secondary pollutants 

may soon be modeled by AERMOD and thus could subsequently be incorporated in transfer 

matrix S.

The HIA calculations in FRESH-EST (and most similar work) make several assumptions 

that may limit some applications. FRESH-EST does not consider population and disease 

dynamics (including trends). It omits health effects for which causal associations with air 

pollutant exposure have not been determined or which are highly uncertain (e.g., birth 

defects, cancer, and mortality). At present, only a single pollutant is considered in the 

optimization, although multiple pollutants may be evaluated using multiple runs.

5.4 Lessons from FRESH-EST development

The implementation of FRESH-EST involved several challenges with quickly reading and 

aggregating many gigabytes of binary data. Several examples are given. First, even the 

simplest FRESH-EST setup involved filling a large 3 dimensional matrix (NSOURCES × 

NRECEPTORS × NHOURS); however, the workstation used could not allocate enough memory 

for the case study problem (options involving writing sections of the matrix to the hard-drive 

would drastically increase computation time and thus were not considered). Therefore, the 

algorithm was modified to read concurrently from several binary files using a local cluster 

(using cores of the local machine as cluster nodes), and create a new S Q matrix for each 

scenario. Second, using the above setup (i.e., each core on the local machine reading from a 

different binary file) the number of concurrent hard-drive reads exceeded the threshold that 

could be sustained at rapid speed. Ultimately, applications worked fastest when set up on a 

cluster consisting of 1 node that read from one binary file at a time. The remaining time-

savings were accomplished by pre-calculating all matrices that were emission-invariant.

6 Conclusions

FRESH-EST is a flexible modeling tool that facilitate rapid tests of emissions and health 

scenarios and is suitable for a wide range of regulatory and scientific applications. In 

addition to developing strategies that meet NAAQS or other concentration objectives, 

FRESH-EST can be used in conjunction with health impact analysis or risk assessment 

techniques to investigate emission reductions strategies that best reduce the burden of 

disease while considering vulnerability factors, e.g., the population density, demographic 

factors, and existing disease rates. The case study results, in particular, the optimized 

emission strategies, can meet regulatory goals and improve health. Forthcoming work will 

apply FRESH-EST to develop air quality management strategies that improve health and 

equity (Martenies et al., in preparation), and we intend to distribute FRESH-EST (please 

email the corresponding author). This will permit additional applications, including those 

relevant to developing emission strategies, evaluating health impacts of alternative scenarios, 

and expediting the SIP process by the rapid development and evaluation of alternative 

control options.
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Highlights

An integrated model, FRESH-EST, rapidly generates concentrations and health impacts

FRESH-EST optimizes emission reduction strategies for environmental and health goals

FRESH-EST optimizations met agency goals in a case study of an SO2 SIP in Detroit, MI

Optimized strategies can contribute to development of emission reduction scenarios
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Figure 1. 
The ZIP codes, receptors (+) and facilities (▲) containing the 11 modeled stacks in the case 

study.
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Figure 2. 
Maps showing annual average SO2 concentrations (ppb) at the ZIP code level for Base, SIP 

and two optimized cases.
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Table 1

Summary of relevant control strategies employed and MDEQ-assigned average monitor violation contribution 

in the proposed SIP (MDEQ, 2015).

Source (% Contribution) Control strategy

Carmeuse Lime (0.6%) Construct a 100-foot standalone stack to vent emissions from both kilns. This taller stack will provide 
additional dispersion and accommodate a higher SO2 emission rate.

US Steel Ecorse (42.0%) The company proposal, to shut down boiler 4 in boiler house 1 and cap the coke oven gas used per 
month, was not accepted. As such, MDEQ gives with Draft Rule 430, which limits the combined 
emission rate from the HSM furnaces to 648 tons/year, among other constraints.

DTE River Rouge and Trenton 
Channel (38.4%)

Employ emission limits based on a 720-hour rolling average. DTE demonstrated that these longer term 
average limits were as stringent as the associated 1-hour limit. Lower sulfur coal will also be used.
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Table 2

Adverse health outcomes, “at risk” population age groups (in years), HIF form, and concentration response 

(CR) coefficients (and standard errors, SE) included in the FRESH-EST health impact assessment database for 

SO2. These SO2-related outcomes use 24-h average SO2 concentrations.

Outcome Age group HIF form CR (SE) Reference

Asthma hospitalizations (0 – 64) Log-linear 0.00203 (0.00259) (Sheppard, 2003)

COPD hospitalizations (65+) Log-linear 0.02081 (0.01113) (Yang et al., 2005)

Asthma ED Visits (0 – 17) Log-linear 0.00825 (0.00190) (Ito et al., 2007)

Asthma ED Visits † (0 – 17) Log-linear 0.00976 (0.00287) (Li et al., 2011)

Asthma exacerbations α (6 – 14) Logistic 0.00392 (0.00196) (Schildcrout et al., 2006)

Asthma exacerbations α† (6 – 14) Logistic 0.01695 (0.00660) (Batterman et al., in preparation)

†
Detroit-specific concentration-response (CR) coefficients used in the Health Impact Functions (HIFs)

α
Total cases of asthma exacerbation (as noted by cough, shortness of breath, wheeze etc.) Acronyms: COPD = Chronic obstructive pulmonary 

disease; ED = Emergency department
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